

The Foundation of XPS/XAES

XPS.Miner.

Outline

- Introduction
 - Terminology, surfaces, types of surfaces.
- The Principles of XPS/XAES
 - Production of photoelectrons, peak labeling, handbooks, books, surface sensitivity, electron escape depth, chemical shift, plasmons, multiplet splitting, shake-up.
- Qualitative Analysis
 - Atomic Electron Levels, identification of elements, energy scale calibration, relaxation effects, Auger parameter, peak widths, lineshapes.

Quantitative Analysis

 Sensitivity factors, photoelectron cross-sections, asymmetry, analyser transmission, detection limits, effect of thin overlayers, overlayer thickness on curved surfaces.

(F) Interface.Miner.

Outline

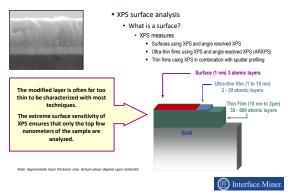
- Instrumentation
 - Vacuum System, X-Ray Sources, electron energy analyzer , ion Gun, Flood Gun, small area analysis, imaging.
- Sample Preparation
- Bulk, fiber, powder, polymer.
- Data processing
 - Data acquisition, background subtraction, measurement of peak area, curve-fitting.
 - Quantitative Compositional Depth Profiling Sputtering, ARXPS.
- Typical Applications of XPS/XAES
 Carbon materials, silicon materials, transition metal, rare earth element
- Related Technique
 - UPS, REELS, AES, ISS, etc.

Terminology

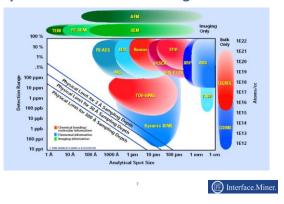
- XPS-X-ray photoelectron spectroscopy
- ESCA-electron spectroscopy for chemical analysis(Kai Siegbahn)
- PES-photoemission spectroscopy
- HXPS or HAXPES-hard X-ray XPS
- ARXPS-angle-resolved XPS
- TRXPS-total reflection XPS
- NAP-XPS-near ambient pressure XPS
- UPS-ultra-violet photoelectron spectroscopy
- XAES-X-ray induced auger electron spectroscopy

F Interface.Miner.

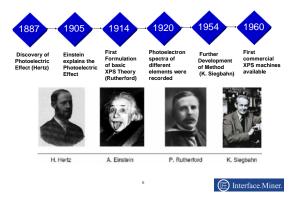
Surface Analysis by XPS

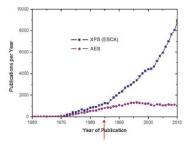

- Identification of elements present at the surfacesqualitative analysis
- Concentration of elements at the surface-quantitative analysis
- · Chemical bonding state of elements-chemistry
- Distribution of elements across the surface-elemental image or map
- Change in composition with depth from the(original) surface-depth profile

Surface

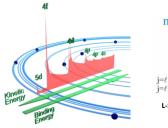

- Processes occurring at the surface are of great practical importance
 - catalysis, coatings, adhesion, corrosion and oxidation, wear and friction, biological implant compatibility, polymers, semiconductors; also at interfaces.
- A surface has ~10¹⁵atoms per cm².
- · If a bulk material is fractured, surfaces are created
 - Initially clean
 - Gases will adsorb on the surfaces if fractured in air.
 - It takes several seconds to adsorb a monolayer in the vacuum Of $10^{\rm -4}\, \rm Pa.$

F Interface.Miner.


Definition of a Surface


Spot size and Detection Range of XPS

Historical Background of XPS


XPS and AES publications per year

multichannel detection and higher analyzer transmission

F Interface.Miner.

Notation of Atomic Electron Levels

L-S Coupling (j = |I + s|)

(F) Interface.Miner.

Notation of Atomic Electron Levels

Electron shell levels in spectroscopic (XPS) and X-ray (AES) notation based on principal quantum number, n; orbital angular momentum, l; spin angular momentum, s; and total angular momentum, j

Quan	uantum numbers			Spectroscopic notation (XPS)	X-ray notation (AES)
n	1	\$	j	notation (APS)	notation (AES)
1	0	+1/2, -1/2	1/2	1s _{1/2}	К
2	0	+1/2, -1/2	1/2	$2s_{1/2}$	L_1
2	1	-1/2	1/2	$2p_{1/2}$	L_2
2	1	+1/2	3/2	$2p_{3/2}$	L_3
3	0	+1/2, -1/2	1/2	$3s_{1/2}$	M1
3	1	-1/2	1/2	3p _{1/2}	M ₂
3	1	+1/2	3/2	3p _{3/2}	M_3
3	2	-1/2	3/2	3d _{3/2}	M_4
3	2	+1/2	5/2	3d5/2	M ₅
					etc.

11

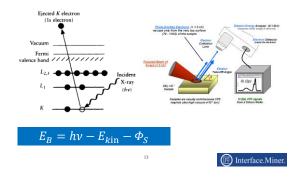
Relative Intensities of Doublets

Relative Intensities of Doublets

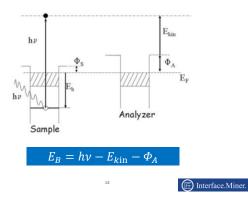
Subshell	J-values	Ratio
s	1/2	
р	1/2:3/2	1:2
d	3/2:5/2	2:3
f	5/2:7/2	3:4

The peak area ratios of a core level of an element in different compounds are also nearly the same.

Spin orbital splitting and peak area ratios assist in elemental identification and curve fitting.

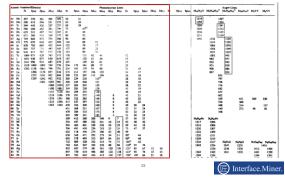

	(metal)
Ag3d _{1/2} (metal)	
Loss feature	
382 378 374 370 Binding Energy (eV	366 362
	Interface.Miner.

Ag3d_{5/2}

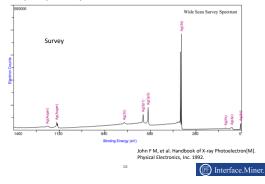

Ag3d spectrum of silver metal

Principle of XPS Analysis

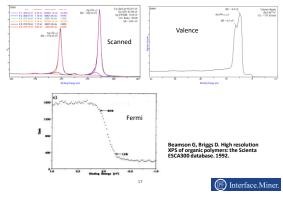
Three-step Model: I) excitation; II) transfer; III) escape.


Principle of XPS Analysis

12

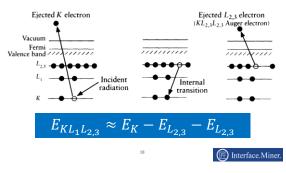

Binding Energies of Elements

Accessible with AIK_{α} Radiation

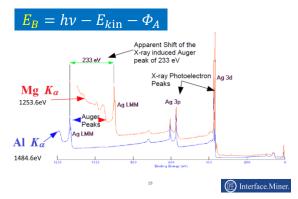


XPS Spectrum of Ag

1s² 2s²p⁶ 3s²p⁶d¹⁰ 4s²p⁶d¹⁰ 5s¹

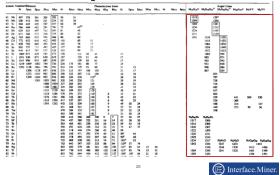


XPS Spectrum of Ag



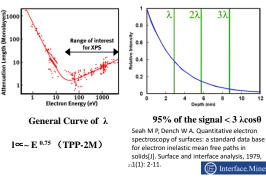
XAES Process

Relaxation of the ionized atom of Figure 1.2 by the emission of a $\mathsf{KL}_{2,3}\mathsf{L}_{2,3}$ Auger electron

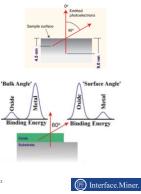


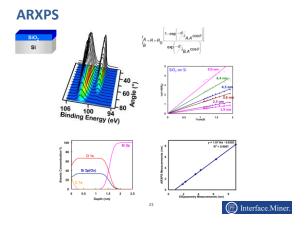
XAES Process

Auger Electron Energies


Accessible with AIK_{α} Radiation

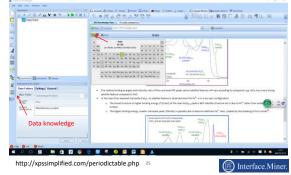
22


XPS is a surface sensitive technique

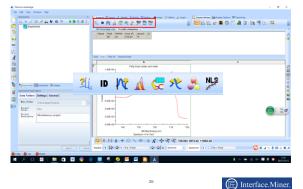

 $I=I_0exp(-z/\lambda)$

ARXPS

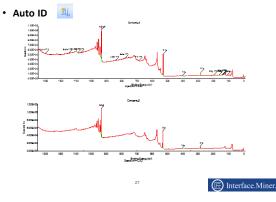
- By changing the electron collection angle, the XPS information depth varies.
- Electrons acquired at a grazing ("surface") angle come exclusively from a shallow region of the sample.
- Electrons acquired at a near-normal ("bulk") angle may come from deeper into the sample.
- •Non-destructive compositional depth profile and thickness measurement of ultra-thin film.



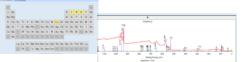
Identification of elements


- · Start with the most intense peak
- Compare position with table/handbook
- Looking for confirming peaks
- Continue until all peaks are identified
- Check relative intensities
- Quantification uses the area of one peak from each element detected

Avantage


Avantage-Thermo Fisher

Avantage

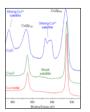


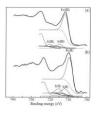
Identification of elements——Avantage

Identification of elements——Avantage

• Manual ID P

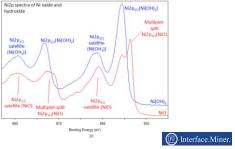
Quantification

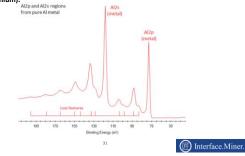

Name	Peak BE	FWHM eV	Area (P) CPS.eV	Atomic %	Q
01s	529.75	1.21	86346.56	49.06	1
Cu2p3	933.17	2.8	220046.7	29.66	1
C1s	284.72	1.54	14507.32	19.96	1
N1s	404.93	0.77	1483.77	1.32	1


F Interface.Miner.

(F) Interface.Miner.

Shake-up Satellites

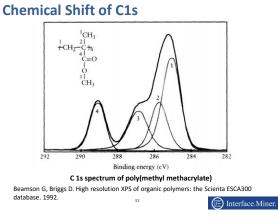

- Shake-up satellites may occur when the outgoing photoelectron simultaneously interacts with a valence electron and excites it (shakes it up) to a higher-energy level.
- The most notable examples being the 2p spectra of the d-band metals and the π -> π * transition brought about by C Is electrons in aromatic organics.


Multiplet Splitting

- Multiplet splitting of a photoelectron peak may occur in a compound that has unpaired electrons in the valence band, and arises from different spin distributions of the electrons of the band structure.
- Mn, Cr(3s levels), Co, Ni (2p3/2 levels), and the 4s levels of the rare earths

Plasmons

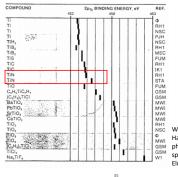
 They arise when the outgoing electron excites collective oscillations in the conduction band electrons and thus suffers a discrete energy loss (or several losses in multiples of the characteristic plasmon frequency, about 15 eV for aluminum).



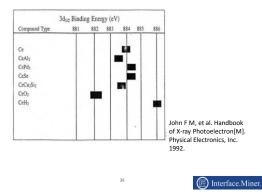
Chemical Shift

- The binding energy of core electrons can change when the chemical environment changes.
- Generally, the binding energy of core levels increase when valence electrons are removed from when valence electrons are removed from an atom.
- Generally, the biding energy of core levels decrease when valence electrons are added to an atom.
- The chemical shift of Some d-band metals and rare earths is not so significant or abnormal(Ce→CeO2,-2eV).

32


Chemical Shift of Si2p

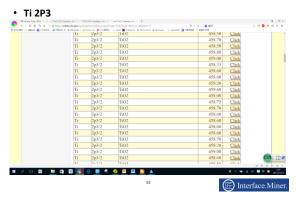
Wagner C D et al. Handbook of X-ray photoelectron spectroscopy[M]. Perkin-Elmer, 1979.


F Interface.Miner.

Chemical Shift of Ti2p3

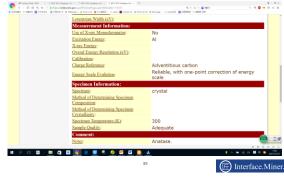
Wagner C D et al. Handbook of X-ray photoelectron spectroscopy[M]. Perkin-Elmer, 1979.

Chemical Shift of Ce3d5



NIST

https://srdata.nist.gov/xps/main_search_menu.aspx


() C O D O O B BOMBIE BER BERE BORDER - PROVE W	<mark>1811 (1974) (1986) 1986) 1 (1976) 1995)</mark> Wilgenia (⊈ Decharm - ∰ 1968) (2) (2) ceolo ≣ Donewine - ₩ Neckineti - ₩ Sendage- () ceolo(2) (2) (R. F. do 🕞 🖬 NET READER: D-REALAN	A 1 0 + 0 + 0
XPS Home Introduction Search Menn Data Field Definition Writion History Disclaimar Acknowledgements Contac Information EΔΩ Eate Our Products	XPS Home Mentify Unknown Spectral Lines Retrieve Data for Selected Element Betrieve Data for Selected Element Display Wagner Plot Retrieve Data for Selected Compounds Retrieve Data by Scientific Citation Instruction: Click on solid arrows at left to display additional choice	er.	
ا 🛢 🛤 د 🖉	37		Interface.Mine

NIST

NIST

• Ti 2P3

XAES and Auger Parameter

• Some elements has more larger XAES chemical shift than XPS.

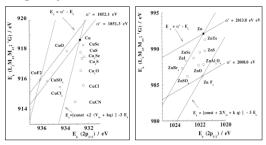
Chemic al Shift			Mg→ MgO	Ag→ Ag2SO4	In .) In2O
XPS	0.1	0.8	0.4	0.2	0.5
XAES	2.3	4.6	6.4	4.0	4.6

Auger Parameter


 $\alpha = E_B + E_k$

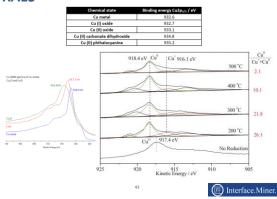
 $E_{\rm B}$ is the binding energy of the most intense photoelectron emission peak and $E_{\rm k}$ is the kinetic energy of the Auger transition

Independent of any electrostatic charging of the specimen.


```
F Interface.Miner.
```


⁴⁰

Wagner plot



 Moretti G. Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review[J]. Journal of electron spectroscopy and related phenomena, 1998, 95(2): 95-144.

42

(F) Interface.Miner.

XAES

Quantitative Analysis

First-principles method:

/= J*Nσ*λcos(θ)T

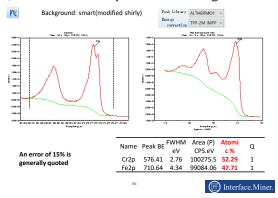
J -- x-ray photon flux

- N -- number of atom per cm³
- σ -- photo-ionized cross section
- λ -- mean free path

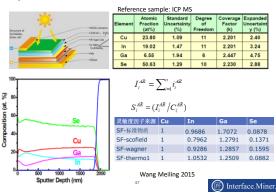
2012.

 θ -- accept solid angle of the analyzer *T*-- transmission of analyzer (T \propto E⁻¹)

 $S = \sigma \lambda T \propto \sigma E^{-0.25}$ Hofmann S. Springer Science & Business Media,

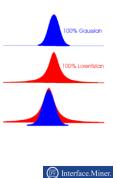

Wagner RSF

$S \propto \sigma E^{-0.34}$, $S_{F1s}=1$.


Table 5. Atomic Sensitivity Factors (ASF)

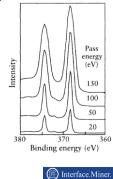
		Description	Line	ARP	2	Depend	Line	ASP Ukreat		Element	10.0	ALSF (here)	z	Element	Line	ASP Ubread
	-															
			14				22*				2644		65	194		
								- 22			1000	2.55		2.4		
IIIIIIAASSondita IIIIIAASSA IIIIIAASA IIIIIAASA IIIIAASA IIIIIAASA IIIIINAASA IIIIIAASA IIIIIAASA IIIIIIAASA IIIIIIIAASA IIIII	- 2			165							24					
	- 5				31		100		55	i.	34		67	Mar P		
	- 6	6	- 2	63					54	Xe		4.9		6.4	-	2.19
	÷	ē.	- 16	1.00	32	Ge.		8.2	55	Ca	31	5.5		To*	44	2.28
Interference of the second sec	10	No.	56	1.64			20	0.2	56	Ba	35	6.1	70	72.41	40	2.06
	11	Na					50		62	La	34.00	6.7	71		40	
			56	(2.27)	33	As										
	12		56						54	Ce ^{re}						
			- 29		34		26						74		- 41	
Signalina e		~	20				26		24	M				148	- 6%	
	- 11		20				26			14.45	- 23	1.00		04		1.4
				- 2	27		20			141-	- 11	10.7		2		1.00
		~	~				- 22	1.00	41	0.05					- 224	1.0
				22				144							100	21
No No<				- 22				1.00	62	Dry [®]					41.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	Ga	20	31	43	Mo	346.2	1.2			44	1.05	62	Pa	41	2.55
220 1 · 0 200 1 · 1 · 1 · 4 · 2 · 4 · 2 · 4 · 2 · 4 · 4 · 4 · 4	21	54	20	.90	43	Te	26.	1.35	63	Eu.	3d	22.8	0.0	Di I	41	2.0
24 OF 25 ₀₀ 1.7 44 Fe 25 ₀₀ 2.0 44 Of 31 254 25 We 25 ₀₀ 2.1 4/ 46 35 ₀₀ 2.25 44 01 ⁴⁴ 31 254 26 Fe 25 ⁴⁴ 33 44 Co 35 ₀₀ 2.25 44 1.54	- 22		20 ₄₀		44		3040	1.55				(20.2)				4.0
20 Nn 20 21 47 46 36 225 36 1224 20 Fe 204 3.8 48 Cd 36 256 41 134				1.4	45	Fh							92	U	41.40	5.6
аната 4 сі ж <u>.</u> 28 — 4 та	24						3644	2.0	64	04*						
<u>м</u>	- 25		20 90	2.1		40		2.25				(22.4)				
	- 26	Pe.	594	3.8	4	C0	2692	2.88			40	1.84				~
	41	where and	60.Mptm	patien ma	les I stad	y desiradore b	17660.75	anas charite	An Art rag	in.						Φ

Quantitative Analysis——Avantage

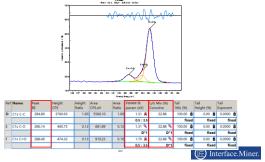


Experimental RSF--CIGS

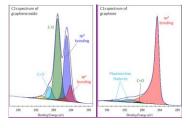
Curve fitting


- Combinations of Gaussian and Lorentzian functions have been generally used.
- Augmented by asymmetric tail functions.
- Also by defining a lineshape using data acquired from a reference sample.
- Reasonable Peak is the most important, followed by FWHM, L/G ratio, and then the asymmetric tail functions.

FWHM


- It is mathematical combination of
 - the natural width of core level, ${f E}_{f L}$
 - Phonon broadening, E_p
 - the width of the X-ray line, ${\rm E_x}$
 - The energy resolution of the analyzer, E_A
- If they are all Gaussian functions or shapes, the measured energy resolution, E_M would be given by:

 $E_{M}^{2} = E_{L}^{2} + E_{p}^{2} + E_{x}^{2} + E_{A}^{2}$


Carbon contamination

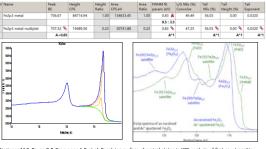
• Adventitious carbon contamination is commonly used as a charge reference for XPS spectra.

Graphene

- Functionalized graphene will have a complex C1s spectrum, containing sp2 and sp3 components.
- The sp3 carbon peak should be 1eV to the higher binding energy side of the sp2 component.

51

F Interface.Miner.

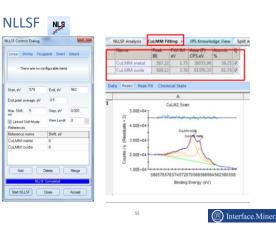

Molybdenum oxides

238 238

Mo3d5 sub		CPS	Height Ratio	Area CPS.eV			L/G Mix (%) Convolve	Tail Mix (%)	Tail Height (%)	Tail Exponent
	231.65	7599.31	0.81	19310.00	1.00	2.12	33.72 8	100.00 🛔	0.00 🕯	0.0000 🛔
	231.61 : 231.81						fixed	fixed		fixed
Mo3d3 sub	234.78 N	5250.85 🗞	0.56	13279.15	0.69	2.12 🗞	33.72 🗯	100.00 📎	0.00 📎	0.0000 %
	A+3.15 (+0.2 -0.1)	A*0.691				A*1	fixed	A*1	A*1	A*1
Mo3d5 MoO3	233.09 📕	6642.52	0.71	8276.16	0.43	1.04 🕯	33.72 🛔	100.00 🕸	0.00 🕯	0.0000 🛔
	232.96 : 233.16					fixed				fixed
Mo3d3 MoO3	236.14	4589.74 💊	0.49	5718.51	0.30	1.04 🛢	33.72 🗯	100.00 🗞	0.00 🗞	0.0000 %
	C+3.15 (+0.2 -0.1)	C*0.691				fixed	fixed	C*1	C*1	C*1
Mo3d5 MoO2	229.52	9342.14	1.00	7247.27	0.38	0.65 📕	33.72 🗞	100.00 율	0.00 🕯	0.0000 🔒
						0.5 : 3.5	A*1	fixed	fixed	fixed
Mo3d3 MoO2	232.66	6455.08 📎	0.69	5007.60	0.26	0.65 🗞	33.72 🗞	100.00 📎	0.00 📎	0.0000 🗞
	E+3.15 (+0.2 -0.1)	E*0.691				E*1	E*1	E*1	E*1	E*1
		Mold. [Mo0	(M	34:0		Mo3data (Mo2data	red MoO ₂			

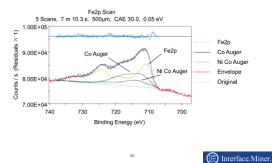
(E) Interface.Miner.

Unsymmetrical Peak

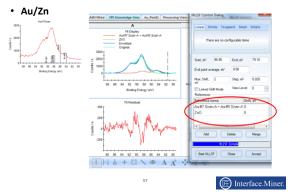

Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and XiJJ. Applied Surface Science, 2011, 257(7): 2717-2730. Biesinger M C, Lau L W M, Gerson A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and ZnJJ. Applied Surface Science, 2010, 257(3): 837-888.

NLLSF

- Non-Linear Least Squares Fitting (NLLSF) assumes that the data is composed of a sum of component spectra but that the peak positions may due to charging, especially in Auger analysis where charge compensation may not be easily controlled.
- In NLLSF, the reference spectra are determined as before, but at every level in the profile, the peak positions are adjusted to give the mathematical best fit.
- The advantage that NLLSF has over normal peak fitting is that real peak shapes compared with G/L mixtures can be applied to sets of data.


54

(F) Interface.Miner.



NLLSF

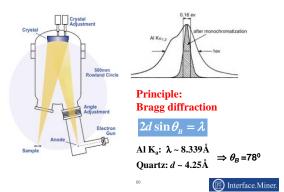
• Fe2p, Co Auger, Ni Auger

NLLSF

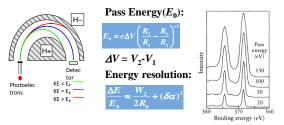
XPS instrumentation

UHV System

- Ultra-high vacuum keeps surfaces clean
 Allows longer photoelectron path length
- X-ray source
- Typically Al Kα radiation
- Monochromated using quartz crystal
- Electron analyser
 - Lens system to collect photoelectrons
 Analyser to filter electron energies
 - Detector to count electrons
- Low-energy electron flood gun
- Analysis of insulating samples
- Ion gun
 - Sample cleaning
 - Depth profiling
 - For polymers, cluster ion sources may be required


F Interface.Miner.

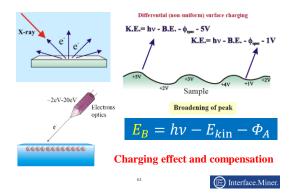
X-ray source


Hemispherical analyser

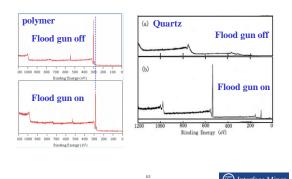
Flood gun

Monochromated X-ray sources

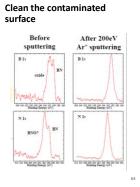
Electron energy analyzer

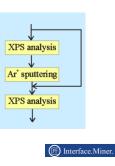

Since W_2 and $\delta \alpha$ is small in CHA, so the energy resolution is high for XPS.

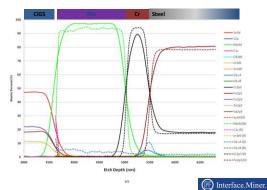
61

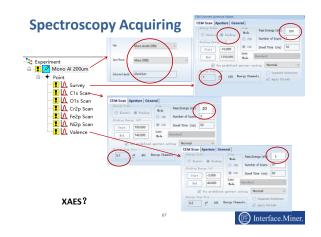


(F) Interface.Miner.


Electron Flood Gun


Electron Flood Gun


Ar Iron Gun



CIGS solar cell

Sample Preparation

- Volatile?
- Magnetic?
- Conductive?
- Size?
- Powder?
 - Tablet press
 - Conducting resin
- Fiber?
 - Tablet press
 - Conducting resin
 - Hang cross a gap

Wagner C D et al, Handbook of X-ray photoelectron spectroscopy/M], Perkin-Elmer, 1979. John F M, et al. Handbook of X-ray Photoelectron[M]. Physical Electronics, Inc. 1992 Beamson G. Briggs D. High resolution XPS of organic polymers: the Scienta ESCA300 database, 1992.

Hofmann S. Auger-and X-ray photoelectron spectroscopy in materials science: a user-oriented guide[M]. Springer Science & Business Media, 2012.

Watts J F, Wolstenholme J. An introduction to surface analysis by XPS and AES[M]. Wiley, 2003. Briggs D. John G. Surface analysis by Auger and X-ray photoelectron spectroscopy(M). IM publications, 2003.

上走领,关大师"行人好"。当 新闻者 (Wind Standsord) The (Wind Standsord) 宣礼、材料发展新考(Mini 清单大学出版社, 2019) 华中一 罗维昂 发面分析(Mini 复旦大学出版社), 1989. Briggs D著,进新教 賞書 起来、社教自主教大社中古能谱(Mini 北京大学出版社, 1984. 賞書店, 王敏尊, 毛希安, 论表面分析及其在材料研究中的应用(J), 2002.

Briggs D. Surface analysis of polymers by XPS and static SIMS[M]. Cambridge University Press, 1998. 王建英,吴文库,冯大明. 电子能谱学(XPS/XAES/UPS) 引论[M]. 国防工业出版社, 1992.

69

Crist B V. Handbooks of monochromatic XPS spectra[M]. XPS International, 1999

XPS and Auger Handbook, Thermo Fisher

(F) Interface.Miner.

Summary of XPS Capabilities

- •Elemental analysis(H,He)
- •Chemical state information
- •Quantification (sensitivity about 0.1 atomic %)
- •Small area analysis (5 µm spatial resolution)
- •Chemical mapping
- •Depth profiling
- •Ultrathin layer thickness
- •Suitable for insulating samples

(F) Interface.Miner.

F Interface.Miner.

Reference

- Website
 - https://srdata.nist.gov/xps/main_search_mer http://xpssimplified.com/periodictable.php http://www.lasurface.com/accueil/index.php

 - http://www.npl.co.uk/science-technology/su
 - http://xpsdata.com/
 - 中科大麻茂生 http://202.38.64.11/~mams/escalab.html Software
 - Avantage http://info1.thermoscientific.com/forms/CAD-MOL-AvantageSoftwareGateway-EN-0000-RE-KR

70

68

Casaxps <u>http://www.casaxps.com/</u> MultiQuant http://aki.ttk.mta.hu/XMQpages/XMQhome.htm

AD

• 测试谷店铺

Reference Handbook

. Book

- 名称: Interface.Miner.
- 主营业务
 - · XPS/UPS咨询、培训及图谱分析
 - ·扫描电镜截面样品制备
 - XPS/UPS咨询及图谱分析 XPS/UPS咨询及数量分析

服务介绍

-1

XPS或UPS图谱数据处理及相关咨询

服务商介绍

本人毕业于国内一流嘉校,导师在国内较早开展AES/XPS研究及应用,目前在 作,近两年专职从事XPS/UPS研究及应用,曾在国际权威会议(IVC 20th)做 屋分析。

71

(F) Interface.Miner.

2017/1/15

Thanks for Your Attention !