薄壁管的电子束焊接

(Electron Beam Of Welding of a Thin-Walled Tube)

目录

目录]
第一章	任务及要求2
第二章	VM 建模
第三章	Visual Mesh 网格划分4
第四章	Visual Weld 模拟焊接11
第五章	Visual Viewer 查看结果及分析20
第六章	改变参数调整结果25

第一章 任务及要求

1.1 任务

本次任务是用电子束焊(Electron Beam)焊接薄壁管(Thin-Walled Tube).

模型尺寸: 30×30×1mm

材料:DP600 (抗拉强度 600MPa)

焊接速度: V=4m/min

线能量: q=180 J/cm

1.2 内容要求

要求焊接后的变形(Displacement)较小,焊接后的残余应力(Stress) 可以稍大。

第二章 VM 建模

1. 创建线

(1). Curve>Circle/Arc 画圆

(2). Method 选择 Centre-Axis

半径 Radius 填写 15

Circle/Arc	
Circle O Arc Axis	
O 3Points O Centre2Pts	
Centre-Axis Concentric	
Radius: 15	
Part ID: 1	
Undo Reset Apply Close	

2. 创建面

- (1). Surface>sweep 拉伸出面
- (2). 选择 Mutiple Curves 选线
- (3). 选择 Vector 确定拉伸方向
- (4). distance 填写 30

Sweep	■ 8 X	 	
Multiple Curves	Vector Vector		
Distance.	Surf Only		
Part	2		
	Undo		
Reset 🕒 Ap	ply Close		

薄壁管建模完成

第三章 Visual Mesh 网格划分

1. 模型分析

此模型为一薄壁管,焊缝附近网格密,远离焊缝网格疏,应先 分割面再划分网格。

2. 分割面

(1). 建节点

<1>.Node>On Curves

<2>.线选择开始画的圆 , Number Of Nodes 为 17

<3>.删掉多余节点,保留所需4个节点

On Curve - Node	Points
 Number of Nodes Distance Between Nodes Vodes a 	at Ends
Biasing Equal Flip Bias Factor: 5	
Node Start ID: 1	Jndo

将4个节点投影到对面

(2). 画线、分割面

- (1). Curves> Sketch 画四条线
- (2). Curves>Split 分割成四个面

- 3. 网格划分
- (1). 焊缝附近网格划分
 - <1>.2D>Automesh Surface 自动网格划分
 - <2>.Element Size 为 0.5
 - <3>.Method 为 Map,ID 改为 11

<4>.生成较为致密网格如下

ſ	- Flement Size	- Dieplay
	þ.5	 ✓ Edge Handles ✓ Edge Seeds
	Edge Method Advanced	
	Type Quad-Tria V Or	rder Linear 🗸
	Method Auto OB	est
	Pave Default Man Default	 ✓ ✓
	Pick Corner Pts.	Pick Spl, Crnr. Pts,
	Auto All Crnr. Pts. Delete All Crnr. Pts. Auto Seed Adjust	
	C	Create Mesh
[Cancel	🖋 ОК
╷╪╪╪╪╪╪╪╪		

(2). 远离焊缝网格划分

<1>.2D>Automesh Surface 自动网格划分

<2>.Element Size 为 3

<3>.Method 为 Map,ID 改为 12

<4>.生成较为疏散网格如下

Element Size Display 3 Edge Handles Edge Seeds
Edge Method Advanced ID Element Options Type Quad-Tria Order Type Quad-Tria Order Linear Method Auto Best Pave Default Pave Default Map Default Pick Corner Pts. Pick Spl.Crnr. Pts. Auto All Crnr. Pts. Pick Spl.Crnr. Pts. Delete All Crnr. Pts. Image: Create Mesh

(3). 剩余网格划分

<1>.2D>Automesh Surface 自动网格划分

<2>.两边种子点个数为10, Biasing 偏置为 Linear 线性点

Factor 设为 2

<3>.Method 为 Map,ID 改为 12

<4>.Advanced 里勾选 Wthin Part 和 Across Part

<5>.生成渐变的网格如下

2D Mesh			
Element Size	Display ✓ Edge Handles ✓ Edge Seeds		
Edge Method Advance	ced ID		
Smooth	Auto Correct Qlty.		
No. of Iterations:	2		
Tol: 0.05	Break Points		
Across Part	Align Seeds		
Split b	y: V Points		
Gradation Factor: 5 Washer for Holes No: 1			
	Create Mesh		
Cancel	🖋 ОК		

(3). 删除自由节点、面和线

4. 检查

(1). 融合重合节点

<1>.Checks>Coincident nodes 融合重合节点

(2). 检查边界

<1>.Checks>Boundery 检查边界

(3). 检查单元质量

<1>.Checks>Element Quality 检查单元质量

<2>.Auto Correct 自动调整网格

Element Type 2D 🔽	🔓 Eleme	ent Par	ram. File:	Import		Export	
Mesh Qua] Jn/Off	Value	No. Viola	ated (%)	Min	Val Max	Va
Min Side Length	OFF	0.1	Not Chec	cked	-	-	
Max Side Length	OFF	3	Not Chec	cked	-	-	
Max Aspect Ratio	OFF	4	Not Chec	cked	-	-	
Min Quad Internal Ang	OFF	30	Not Chec	cked	-	-	
Max Quad Internal Ang	OFF	160	Not Chec	cked	-	-	
Min Tria Internal Ang	NO	30	10 (10.0	00 %)	25.	764 57	. 78
Max Tria Internal Ang	OFF	120	Not Chec	cked	-	-	
Max Warp Angle	OFF	8	Not Cheo	cked	-	-	
Min Taper	OFF	0.7	Not Cheo	cked	-	-	
Max Skew	OFF	45	Not Chec	cked	-	-	
His Trachias							
min Jacobian	OFF	0.7	Not Chec	cked	-	-	
min Jacobian Total Violated	OFF -	0.7	Not Chec 10 (0	cked .41 %	-	-	
Detection #Quads : 2342 (95.90%), Display	OFF – , #Trias :	0.7 - : 100 (4.1	Not Chee 10 (O	cked . 41 %	-	- - Check	
Detection #Quads : 2342 (95.90%), Display Element Quality O Fr	OFF - , #Trias : inge Disp	0.7 – : 100 (4.1)	Not Chee 10 (0 0%)	cked - 41 % - Ma	- - [ax Val:	- - Check	
Detection #Quads : 2342 (95.90%), Display © Element Quality O Fr Quality Correct	OFF - , #Trias : inge Disp	0.7 – : 100 (4.1)	Not Chee 10 (0	cked . 41 % . Ма	- - (- - Check	
Detection #Quads : 2342 (95.90%), Display © Element Quality O Fr Quality Correct Auto Correct Shell	OFF - , #Trias : inge Disp	0. 7 – : 100 (4. 1) vlay Mir Undo	Not Chee 10 (0 0%) n Val:	cked 41 % Ma	- - (ax Val:	Check	
Total Violated Detection #Quads : 2342 (95.90%), Display © Element Quality O Fr Quality Correct Auto Correct Shell Split Failed Quads for:	OFF –	0.7 – : 100 (4.1) Jay Mir Undo	Not Chee 10 (0 0%) Nal: Add to Scheme	Collector	- - ax Val:	Check	

Element Tune DD		at Day	The Incent		
	12 cieme	nt Par	am. File: Import		:xport
Mesh Qua	Jn/Off	Value	No. Violated (%)	Min Val	Max Val
Min Side Length	OFF	0.1	Not Checked	-	-
Max Side Length	OFF	3	Not Checked	-	-
Max Aspect Ratio	OFF	4	Not Checked	-	-
Min Quad Internal Ang	OFF	30	Not Checked	-	-
Max Quad Internal Ang	OFF	160	Not Checked	-	-
Min Tria Internal Ang	ON	30	0 (0.00 %)	30, 767	57.789
Max Tria Internal Ang	OFF	120	Not Checked	-	-
Max Warp Angle	OFF	8	Not Checked	-	-
Min Taper	OFF	0.7	Not Checked	-	-
Max Skew	OFF	45	Not Checked	-	-
Min Jacobian	OFF	0.7	Not Checked	-	-
Total Violated	-	-	0 (0.00 %)	-	-
Detection #Quads : 2342 (95.90%), #Trias : 100 (4.10%) Display Element Quality Element Quality Max Val					
Detection #Quads : 2342 (95.90%), Display O Element Quality O Fr	#Trias : inge Displ	100 (4. 10)%) i Val: Ma	ax Val:	Check
Detection #Quads : 2342 (95.90%), Display Element Quality O Fr Quality Correct	#Trias : inge Displ	100 (4. 10 lay Mir)%) Val: Ma	ax Val:	Check
Detection #Quads : 2342 (95.90%), Display Element Quality O Fr Quality Correct Auto Correct Shell C Split Failed Quads for:	#Trias : inge Displ	100 (4. 10 lay Min Undo	0%) Val: Ma Add to Collector Scheme:	ax Val:	Check

<3>.采用 Auto Correct 处理后,再次 check 得:

<4>.将所有 2D 单元 Add to new part 添加到一个 part 里,命名 Component_01.

- 5. 保存和导出文件
- (1). 保存文件

<1>.File>Save 保存为 vdb 格式文件

File name:	tube.vdb	Save
Files of type:	VDB files (*.vdb)	Cancel

(2). 导出文件

<1>.File>Export 导出 ASC 格式文件

<2>.ASC 为只含有网格文件

File name:	TUBE_DATA1000.ASC	~	Save
Files of type:	SYSTUS ASC data files (*DATA*.ASC; *DONN*.ASC)	~	Cancel

第四章 Visual Weld 模拟焊接

1. 求解器和未沉积相设置

(1).求解器设置

<1>.Tools>Solver settings 设置求解器路径

🖪 Solver Sett	ings 🖪 🤉 🗙
Product:	
sysweld	~
Solver:	
Language:	💿 English 🛛 🔘 French
Path:	
D:\Program F	Files\ESI Group\SYSWORLD 📔
Reset	V OK Cancel

(2). 未沉积相设置

<1>.File>General Preference 设置 Dispoited Material

General	Directories	Selection	3D Vie	w Grag	phies
Console	VWeld	Preferences	Wind	ow Manager	
Variable Miscell	aneous		V	alue	
Use Namin	ng Convention F	ile	Y	es	~
Export No	ot Yet Deposite	d Material	N	ío	~

- 2. 焊前工艺准备-创建集
- (1). 定义焊接轨迹

<1>.Tools>Create Trajectoy 定义焊接轨迹

<2>.选择两个开始节点和结束节点(注意顺序)

<3>.自动生成下面的集

Create Trajectory	■ ? ×	
Method: Two Node	~	
Start Node(s):	Rode マ	
Direction Node(s):	Rode	🖯 🇁 Collectors (5)
End Node(s):	Node	● 1=>TO1_PATH
Closed Loop		עעע וווע -0
Gray Boundary	Flip Q Preview	
Name		3=>JO1_SNO
Bead 🔄		4=>TO1 RND
Name Prefix:]	
Reset 🕒 🖌	Apply Close	5=>JO1_SEL

<4>.自动生成的焊接线和参考线

(2). 创建热传导面

<1>.选择所有 2D 单元 add to new collector

<2>.将此集重命名为 Shell_Air_Heat_Exchange

(3). 定义夹持条件

<1>.选择三个节点作为夹持点, add to new collector

<2>.将此集重命名为 Clamp_01

(4). 定义热影响区

<1>.选择焊缝附近 2D 单元 add to new collector

<2>.将此集重命名为 Load_01

3. 建立工程文件

(1). Project Description 工程描述

```
<1>.Name:TUBE(名称)
```

<2>.Title:ELECTRON BEAM WELDING OF A THIN-WALLED

TUBE(标题)

<3>.Working Directoy: D:\tube2(工作路径)

<4>.描述: 材料为 DP600

⊟ ¥e	lding Advis	or	(3 X
1	▼ 1 Pro	oject I	Description	
2	*Name:		TUBE	
6	Title:		ELECTRON BEAM WEI	DING
ತ	*Working Dire	ectory:	D:\tube2	Ē
4	Description	۱ <u> </u>		
5	General:	electro thin-wa	n beam welding of a alled tube	*
6	Material:	DP600		*
				×
8				

(2). Global Parameter 设置全局参数

<1>.Computation:Shells 计算对象为壳体,全部为 2D 单元;

一般选择 Solid,此处为 Shells.

- (3). Component Properties 组件属性
 - <1>.将 COMPONENT_01 赋予材料属性
 - <2>.Material 材料:DP-W-600
 - <3>.Thickness 厚度: 1
 - <4>.点击 Add 添加

1	▼ 3 Compone	ent Prope	rties
2	Material *Database: D:\tul	pe2\TUBE.mat	Ē
3	*Class: All		~
4	 Components 	🔘 Join	nts with Filler
5	Assign		
6	🔉 *Component		
9	*Material:	DP-W-600	~
	*Thickness:	1.000	
8			Add
	Component/Joint <u>A</u>	Material	Thi ckness
	COMPONENT_01	DP-W-600	1.000

- (4). Welding Process 焊接工艺
 - <1>.Process Type:Electron Beam 焊接方法电子束焊
 - <2>.线能量单位 J/mm,焊速单位 m/min
 - <3>.设置 Weld Line 焊接线
 - <4>.设置 Weld Pool 焊接熔池

<5>.设置 Energy 焊接能量

🛐 🔻 4 Welding I	Process	1	 4 Welding Pr 	rocess
*Process Type: Elect	ron Beam 🗸	2	*Process Type: Electro	on Beam 🗸
Automatic Energy (Automatic Energy (Energy/unit Length of Velocity: Weld Line Weld Pool	Calibration Weld: J/cm v m/min v	3 4 5 6	Automatic Energy Ca Energy/unit Length of W Velocity: Weld Line Weld Pool Heat Source:	Veld: J/cm v m/min v Energy Beam v
*Weld Line	J01_PATH	7	*Velocity:	4.000
7 Filler Material	J01_REF	8	*Initial Time:	0.000
8 Nelding Group			End Time:	0.450
			Estimated	
Reference Line	J01_REF		*Top Dia.:	1.000
🔓 *Start Node	J01_SNO		*Bottom Dia.:	1.000
*End Node	J01_ENO		*Penetration:	2.000
Start Element	J01_SEL		User Length Step:	1

(5). Cooling Condition 冷却条件

<1>.冷却条件 Free air Cooling 空冷

<2>.点击 Add 添加

1	▼ 5 Cooling Condition
2	Definition
3	*Medium: Free Air Cooling
4	*Ambient Temp.: 20.000
5	
6	Add
	Collector 📐 Temperature - Function -
8	SHELL_AIR 20.000 SHELL_A

(6). Clamping Conditions 夹持条件

<1>.点击 Collector 选择 CLAMP_01

<2>.Type:Unclamped 自由夹持

<3>.Initial Time:0 开始时间

<4>.End Time:120 结束时间

	-
1	 6 Clamping Condition
ര	Clamp Definition
2	🗟 *Collector
3	Туре
	O Elastic O Rigid
4	O Symmetry O Unclamped
5	
6	
7	
Ľ	Add
8	None & Group Trme
	Clamp(1 CLAMP 01 Unclamped
	Enlarge
	Clamping Condition
	🔓 *Clamp

(7). Loads and Deformations 载荷与变形

<1>.Function DB:D:\tube2\TUBE.fct 函数的路径

<2>.其他地方不设置

Function DB:	D:\tube2\	TUBE.fct	6
- Definition			
> *Collector			
	x	Y	z
Displacement(U):			
Force(F):			
Pressure(P):			
f(time):	None		~
g(position, time):	None		~
Local reference	frame Ref	erence Fi	ame
Hint: load=value.f	(t).g(X,t)	A	dd
G <u>A</u> . U(x F	(x P (x	f .	· · · 8· · ·
L		F -1	
		Enl	arge
- Loading Condition			_
*Load			

- (8). Solution Parameters 求解参数
 - <1>.勾选 Mechanical

<2>.Initial Temperature:20 初始温度 20

1	▼ 8 Solution Parameter
2	►*Analysis ✓ Thermo-Metallurgical ✓ Mechanical
3	Process
	Start Time: 0.000
۳	*End Time: 120.000
5	*Initial Temperature: 20.000
6	Advanced
	Advanced +
7	Generate Input Data
8	

<3>.点击 Generate Input Data,生成如下文件

01_DATA	2013/6/29 17:39	文件夹
02_COMP	2013/6/29 17:39	文件夹
3_RESU	2013/6/30 20:06	文件夹
TUBE.fct	2013/6/30 20:13	FCT 文作

+++++ End of reporting ++++++

0 errors encoutered 0 warnings encoutered

4. Job Submission 提交任务

(1). 计算结果

<1>.Welding > Computation Manager 计算管理器

<2>.选择 TUBE.vdb 文件

<3>.勾选"Heat Transfer"和"Mechanical"下的所有选项,点击

Compute 计算结果

<4>.生成如下结果文件

J. Jube i						
Step Name	Active Weld	Initial Time	Final Time	Thermo-Metallurgi	Mechanical	
TUBE	J01_PATH (0.0)	0.000	120.000	— …		

名称	修改日期	类型	大小
TUBE_POST1000.fdb	2013/6/29 17:26	Exceed Font List	11,680 KB
TUBE_POST1000.fdb.erfh5	2013/6/29 17:42	ERFH5 文件	12,883 KB
d TUBE_POST2000.fdb	2013/6/29 17:37	Exceed Font List	21,072 KB
TUBE_V_DATA1000.TIT	2013/6/29 17:26	TIT 文件	328 KB
TUBE_V_DATA2000.TIT	2013/6/29 17:37	TIT 文件	268 KB
d TUBE_V_POST1000.fdb	2013/6/29 17:26	Exceed Font List	23,361 KB
d TUBE_V_POST2000.fdb	2013/6/29 17:37	Exceed Font List	27,249 KB

第五章 Visual Viewer 查看结果及分析

- 1. 温度结果
- (1). 最高温度
 - <1>.Results>Contour Over Time 查看最大温度
 - <2>.选择 Maximum
 - <3>.双击 TEMPERATURE_NOD 节点温度

<4>.可以看到最高温度 903.49℃

🙀 Contour Over Time 🖪 🖓 💌		
Criteria Maximum Absolute Maximum	O Minimum O Absolute Minimum	
O Cumulative	O Average	
Entity Type :		
NODE		
TEMPERATURE_NOD		

- (2). 焊接热循环曲线
 - <1>.File>Import and plot 查看温度曲线
 - <2>.选择 11433 节点
 - <3>.点击 Plot 生成曲线
 - <4>.11433node 焊接热循环曲线如下

(3). 温度结果分析

由于电子束线能量较大、焊速快,11433 节点温度升高较快。 冷却过程为空冷,所以温度下降相对缓慢。熔池最高温度可达到 903.5℃左右。焊件上每一点焊接热循环,都影响最后金相组织和力 学性能。

- 2. 相结果
- (1). 各数字所代表的相组织
 - <1>.1 : Ferrite 铁素体
 - <2>.2: Martensite 马氏体
 - <3>. : Not yet existing filler material, transformation to austenite

此例无填充材料

<4>.4 : Austenite 奥氏体

(2). 查看 PHASE1,得到如下形式的图标,选择的时刻是 120S,已经结束整个焊接过程了

从图中可以看到,除去焊缝及其附近区域,Ferrite 铁素体基本上保持 不变,焊缝区域由于经受了热循环,其组织已发生了转变 (查看 PHASE2 图形,显示完全不存在(Martensite)马氏体 (3). 查看 PHASE4 图形,得到如下结果

分析可知,焊缝及其热影响区铁素体组织部分转变成奥氏体,但是含量非常少,焊接线附近最高也才只占 0.6%

(4). 焊接变形分析 (DISPLACEMENTS)

可以看到最大变形为 0.071, 相对于 1mm 厚度的薄壁管来说, 这变形还是在可以接受的范围内, 占 7.1%, 观看视频可知, 这时刻也是最终结束时

分析可知,当焊接热源开始作用时,管材要发生正变形,即物体受热 膨胀,之后物体便处于冷却过程中,受到压缩变形,这图表上显示为 变形为负值

(5). 由《焊接结构学》知识可知,在焊接过程中,沿焊缝横向(即Y)方向)应力和厚度Z方向应力分布十分复杂,这里只分析焊缝纵向

(XX 方向)应力分布

以上显示的是 120 秒时的残余应力分布图,冷却后,焊缝中心及其热影响受拉,承受拉应力,最大拉应力为 529Mpa;对于整个构件来说, 它必须保持受力平衡,所以远离焊缝区的大部分面积上都为压应力, 数值较小,最大压应力为 172.3Mpa

第六章 改变参数调整结果

1. 将焊接速度 V=4m/s, 调整为 V=5m/s

(1). 温度图

选取最后 120 秒时刻的温度图

这时刻焊件已经经过一定的冷却时间了,可以看到其温度基本上已平

均化,快接近到室温 20℃了

(2). 温度曲线图

选取如下的节点,查看其温度曲线图

即 Node2203 处所经历的的整个焊接过程温度变化,图表如下:

(3). 查看各相组织成分

	PHASE_PROPORTIONS_ELE_INF_1
	PHASE_PROPORTIONS_ELE_INF_2
	PHASE_PROPORTIONS_ELE_INF_3
	PHASE_PROPORTIONS_ELE_INF_4

<1>.铁素体组织

焊缝中心处,及其热影响区,由于经受了焊接热循环的作用,其组织已发生了变化,可以看到其铁素体组织含量没有达到100%,但是远离焊缝区,其组织保持不变

<2>.奥氏体组织

观察图表可知,焊缝区发生了部分奥氏体组织转变,但是含量极低, 最大处也不到 0.4%

(4). 变形

最大变形为 0.068mm,相比于原始的 0.071mm,变形有所减小。这符 合实际变形规律,当焊接线能量不变时,增大焊接速度,焊接所获得 的能量就减少,这样相应的变形就降低了

(5). 残余应力

选取焊缝纵向应力进行分析

可以看到,其最后的残余应力分布和残余应力大小如下图

残余应力分布范围合适,焊缝中心区承受拉应力,两侧受压

(6). 对比结果分析

本例中增大了焊接速度,焊接线能量保持不变,相当于单位面积 上所获得的能量就降低了。分析最终结果可以看到,其最后的焊接残 余变形减小了,焊后残余奥氏体组织液相应的减少了,温度曲线变化 也没有那么剧烈了,符合实际情况。