Renew. Sust. Energ. Rev. 综述: 复合能量收集技术:从材料、结构设计、系统集成到应用


【前言】

能量收集技术在实现自供电无线传感节点(WSNs)和低功耗传感设备可持续供电方面具有显著发展潜力。近年来复合能量收集技术得到广泛关注,通过合理俘获多种环境能源和采用多种能量转换机制,不仅可以有效提高空间利用效率,而且可以显著提高功率输出。复合能量收集技术在未来物联网(IoT)时代具有诸多潜在应用前景,包括结构体健康监测、工业状态监测、智能交通、人体健康监测、海洋工程和航天工程等。

近日《Renewable and Sustainable Energy Reviews》刊发综述文章《Hybrid energy harvesting technology: From materials, structural design, system integration to applications》,对近年来的复合能量收集研究进展和代表性工作进行了全面综述,重点介绍了振动能和热能收集技术的换能机理、工作原理、典型结构、输出性能和应用展望,并针对当前进展探讨了该领域的创新、挑战和潜在研究方向。文章共同第一作者为苏州大学刘会聪教授和拉夫堡大学付海岭教授,共同通讯作者为拉夫堡大学付海岭教授、英国帝国理工学院Eric Yeatman教授与新加坡国立大学Chengkuo Lee教授。

文章链接:Hybrid energy harvesting technology: From materials, structural design, system integration to applications, Renewable and Sustainable Energy Reviews, 110473 (2020);https://doi.org/10.1016/j.rser.2020.110473

图一:能量转换机制及其典型结构:(a)压电,(b)电磁,(c)摩擦电,(d)热电,和(e)热释电。

Figure1

Energy conversion mechanisms and their typical configurations: (a) piezoelectric, (b) electromagnetic, (c) triboelectric, (d) thermoelectric, and (e) pyroelectric.

图二:压电能量收集器的典型结构构造:(a)矩形,(b)三角形,(c)锥形,(d)S形,(e)拱形和(f)弯张结构。

Figure 2

Typical structural configurations for PEHs including (a) rectangular, (b) triangular, (c) taper, (d) S-shape, (e) arch-shape, and (f) flextensional structures.

图三:电磁能量收集器的典型结构构造:(a)-(d)谐振式和(e)-(f)旋转式。

Figure 3

Typical structural configurations for EMEHs including (a)-(d) resonant and (e)-(g) rotational structures.

图四:摩擦电能量收集器的典型结构构造:(a)-(b)接触分离式,(c)-(e)水平滑动式,(f)-(g)单电极式,和(h)-(i)独立摩擦电层模式。

Figure 4

Typical structural configurations for TENGs including (a)-(b) contact-separation, (c)-(e) lateral-sliding, (f)-(g) single-electrode, and (h)-(i) freestanding triboelectric-layer modes.

图五:热电能量收集器的典型结构构造,包括(a)光致热电,(b)柔性热电,(c)可穿戴结构,(d)和(e)基于相变材料的热电结构。

Figure5

Typical structural configurations for TEHs, including (a) light-to-heat TEH, (b) flexible THE, (c) wearable THE, (d) and (e) PCM-based TEHs.

图六:热释电能量收集器的典型结构构造与应用:(a)基于液体金属的热释电;(b)尾气热回收;(c)热释电分解水;(d)微型热管振动热释电;(e)振动热源热释电。

Figure 6

Typical structural configurations and applicaitons for pyroelectric energy harvesters. (a) Liquid-metal based pyroelectric harvester, (b) pyroelectric harvester for exhaust gas heat recovery, (c) pyroelectric harvester for water splitting, (d) oscillating heat pipe-based harvester and (e) oscillating heat mass-based pyroelectric harvester.

图七:基于结构梁(a)、(b)、(d)、(e)和基于振荡质量(c)、(f)、(g)的压电-电磁复合能量收集系统结构图。

Figure 7

Configuration illustrations of the PE-EM hybrid systems based on beams (a), (b), (d) and (e) and based on oscillating mass (c), (f) and (g).

图八:基于气流(a)、(b)、(d)和声能(c)的压电-电磁复合能量收集系统结构图。

Figure 8

Configuration illustration of the PE-EM hybrid systems for harvesting airflow (a), (b) and (d) and for collecting acoustic energy (c).

图九:压电-电磁复合能量收集系统功率调节的典型电源管理电路,包括典型功能块(a)、实现方案(b)、以及完整的压电-电磁电源管理方案(c)和(d)。

Figure 9

Typical power management circuits for regulating power from PE-EM hybrid systems, including typical function blocks (a), implementation solution (b) and one complete PE-EM solution (c) and (d).

图十:基于(a)分离模式和(b)共存模式的压电-摩擦电效应的复合能量收集系统结构和材料示意图。

Figure 10

Configuration and material illustrations of the PE-TE hybrid systems driven by external force with (a) separated and (b) coexisted piezoelectric and triboelectric effects.

图十一:振动和风致驱动的压电-摩擦电复合能量收集系统结构示意图

Figure 11

Configuration illustrations of the PE-TE hybrid systems driven by vibration and wind flow.

图十二:基于弹簧质量、形变膜和磁浮结构的共振式电磁-摩擦电复合能量收集系统。

Figure12

Resonant structures of the EM-TE hybrid systems, by employing spring-mass, deflected-membrane, and magnetic-floating structures.

图十三:电磁-摩擦电复合能量收集系统的非共振和旋转结构,用于(a)-(c)水波能量收集,(d)人类手腕运动收集, 以及(e)-(f)旋转能量收集。

Figure13

Non-resonant and rotational structures of the EM-TE hybrid systems, for (a)-(c) water wave energy harvesting, (d) human wrist-motion harvesting, and (e)-(f) rotation energy harvesting.

图十四:基于(a)弹簧质量结构、(b)磁悬浮结构、(c)非共振磁性滚动球和(d)风车结构的压电-电磁-摩擦电复合能量收集系统的配置图。

Figure14

Configuration illustrations of the PE-EM-TE hybrid systems by using (a) spring-mass structure, (b) magnetic levitation structure, (c) non-resonant magnetic rolling ball, and (d) windmill structure.

图十五:其他类型的复合能量收集系统:(a) 光伏、热电和热水能源的复合能量收集器,(b)太阳能和机械能复合能量收集器,(c)压电和热释电复合能量收集器,(d)可伸缩压电和热释电能量收集器,以及(e)太阳能和电磁复合能量收集器。

Figure 15

Other type of hybrid energy harvesting systems. (a) Hybrid energy harvester from photovoltaic, thermoelectric and hot water energy, (b) hybrid solar and mechanical harvester, (c) hybrid piezoelectric and pyroelectric harvester, (d) stretchable piezoelectric and pyroelectric harvester and (e) hybrid solar and EM harvester.

图十六:复合能量收集系统的各种能量源和应用前景展望。

Figure 16

Energy sources and application prospect for hybrid energy harvesting systems.

本文由作者团队供稿。

分享到