JACS: 高负载铱显著增强氧化镍基析氧反应


【引言】

水分解是一项极具前景的技术,传统的四电子析氧反应(OER)存在动力学缓慢,能量损失大等问题,即使是目前最先进的高成本的贵金属催化剂(如氧化铱和氧化钌)仍然存在这个问题,这直接阻碍了该技术的大规模应用。因此,研究者致力于开发低成本高效益的OER催化剂替代现有的商业催化剂。单原子催化剂(SACs)因其在电化学反应中具有活性中心均匀性好、产物选择性高、载体种类多、原子利用率高、贵金属用量少等优点而受到广泛关注。

然而,由于金属原子与载体之间的弱相互作用,制备SACs一直面临着单个原子在载体上负载低的挑战。为了解决这个问题,大多数研究集中在修饰载体材料上,如引入缺陷、空位和掺杂原子,以增强载体与金属原子之间的相互作用。然而,通过这些方法产生的缺陷位点数量有限,这导致单原子的负载量仍然太低,催化活性不足,无法商业应用。SACs的实际应用受到有限活性位点的限制,而活性位点数量是目前SACs的主要屏障。因此,提高催化剂的负载量迫切需要更有效的策略。

除活性中心外,单原子的本征活性是决定催化性能的另一个方面。催化剂原子与载体之间的相互作用对催化剂的稳定性和活性有着重要的影响。载体不但提供了催化反应发生的平台,同时也决定了局部原子结构和电子结构。在这方面,为了最大限度地提高金属原子的催化活性,将单个原子锚定在载体上的稳定位置对SACs的合理设计至关重要。尽管迄今为止,在实验和理论上都取得了令人鼓舞的进展,但对于实现锚定在明确位置上的单原子高覆盖率的研究仍然不足,需要进一步探索。

【研究进展】

近日,南方滚球体育 大学谷猛教授和徐虎教授联合俄勒冈州立大学的Zhenxing Feng教授在JACS上报道了一项高效析氧反应的工作,文章题目为” Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction”。 作者开发了一种简便的方法来合成单一的铱原子催化剂(称为Ir-NiO),其在氧化镍(NiO)基体上的铱原子负载量达到了前所未有的18wt%。像差校正扫描透射电子显微镜(STEM)和同步辐射X射线吸收光谱(XAS)表明,单个铱原子均匀地分布在NiO的最外层表面。密度泛函理论计算表明,被取代的单原子是OER的活性中心,同时由于铱原子引入的过量电子激活了NiO的近表面反应性,从而显著提高了NiO的OER性能。由于单个铱单原子的高负载量和独特的电子结构,Ir-NiO在260 mV的过电位下表现出优越的OER活性,电流密度超过了IrO246倍以上。

【图文简介】

图1材料表征

a-b)具有代表性的低(a)和高(b)放大率的NiO样品的SEM图像;

c) NiO和Ir-NiO的XRD图谱;

d) Ir-NiO的EDS谱;

e, g) 代表性的低倍和(g)高倍HAADF-STEM图像显示了高密度的铱单原子;

f) Ir-NiO的STEM-EDS元素图;

h-i)(h)Ir M-edge和(i)O K-edge和Ni L-edge的EELScore-loss信号。

图2元素表征

a) 具有代表性的红外NiO催化剂HAADF-STEM显微照片,其中的亮点归因于铱单原子。b-c)相应的原子模型。

d-k)沿(d,e,h)[111]区域轴和(i-k)[211]区域轴的原子图像;

l) 这些线表示在(h-i)中标记的HAADF强度分析的线轮廓;

f-g)[111]和[211]区域轴的原子模型。(所有图中比例尺均为1nm)

图3 Ir-NiO、IrO2和NiO的XPS和XAS表征

a) IrO2和Ir NiOIr 4f区的曲线解析XPS;

b) NiO和Ir-NiO的Ni 2p区的曲线分辨XPS;

c)Ir-NiO、Ir箔和IrO2的Ir-L3 X射线近边分析数据;

d) NiO,NiO和NiOOH的Ni K边XANES数据;

e-f)Ir-NiO催化剂(e)Ir L边和(f)Ni K边的傅里叶变换EXAFS光谱及其参考数据。

图4催化性能表征

a-b) Ir-NiO、NiO和IrO2催化剂在1M KOH中的LSV极化曲线和OER的(b)Tafel图;

c) 不同催化剂在电流密度为10 mA cm-2时的过电位,插图是电流密度为1.48 V和1.49 V时与RHE时的比较;

d) 通过绘制0.75 V/RHE时的电流密度变化与扫描速度的对比来估计Cdl,以拟合线性回归;e) 在j=10 mA cm-2下进行10 h的长期耐久性试验。

图5理论计算

a)理想NiO(001)和单Ir原子掺杂NiO(001)(Ir-NiO(001))上1.23 V/RHE势下OER的自由能;

b)Ir-NiO(001)表面二维电势场的DFT计算;

c)*OH从Ni原子向Ir原子扩散的能量分布。

【小结】

该研究实现了锚定在NiO基体上的Ir单原子的超高负载,极大地改善了水的分裂性能。结果表明,负载的Ir原子位于NiO最外表面的Ni位,即使在10小时后仍保持单原子状态。Ir单原子在NiO表面的超高负载量不仅提高了催化剂的催化活性,而且有助于保持样品在长循环后的结构完整性。独特的原子结构使Ir的氧化态接近4+。DFT计算表明,取代的Ir原子是OER的活性中心,同时也提高了周围Ni原子的活性,从而显著提高了NiO的OER性能。催化位点的增加和单原子与载体之间的协同作用是提高SACs内在活性的重要原因,为SACs的进一步合成和设计提供了理论依据。

文献链接:Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction, JACS, 2020, DOI: 10.1021/jacs.9b12642.

谷猛团队介绍:

纳米能源实验室成立于2017年,现有团队成员22人。团队带头人谷猛博士目前为南方滚球体育 大学材料科学与工程系副教授,主要从事能源材料科学研究,研究领域包括基于原位透射电镜研究电池、高性能全固态电池的合成和机理分析、原位透射电镜研究催化剂等几个方面。

工作汇总:

谷猛研究员2015年获得美国电镜协会颁发的Albert CREWE Award,2017年入选千人计划,2018年入选孔雀计划B类与深圳领航人才,2019年获得深圳市青年滚球体育 奖。获得了青年千人计划300万经费,孔雀计划500万经费,国家自然科学基金青年项目,中广核研究项目,以骨干成员身份参与深圳市工程重点实验室项目,深圳清洁能源研究院,广东省电驱动力能源材料重点实验室,粤港澳光热电能源材料与器件联合实验室等。取得多项国际同行高度认可的标志性科研成果。团队文章多发表在Nature Catalysis, Nature Communications,Nano Letters,ACS Nano,Advanced Materials,angewandte chemie international edition,Physical Review Letters,Nano Energy等知名杂志,Google Scholar引用7600次,其中ESI他引统计共4730次,ESI高被引论文共9篇,ESI他引超过100次的有17篇。其中第一、通讯作者且影响因子大于10的文章有21篇。

研究成果:1.围绕催化剂的应用基础研究,基于工业生产对新型高性能清洁催化剂的迫切需求,从材料-性能-机理-应用进行贯通式研发,实现大批量低成本实用催化剂的研发、完善和升级。目前已申请专利八项,其中美国专利1项。绿色催化剂的产业化制备与性能研究正在稳步进行。2.采用全新的固态电解质取代当前有机电解液和隔膜来制备固态电池,具有高安全性、高体积能量密度,同时与不同新型高比能电极体系(如锂硫体系、金属-空气体系等)进行适配研究,可进一步提升质量能量密度,并配套南科大先进的球差电镜对其进行表征与机理研究,并采用更简单安全的方法来制备固态电解质,从而促进固态电池的产业化。

相关论文:

  1. Xiaoben Zhang#, Shaobo Han#, Beien Zhu, Guanghui Zhang, Xiaoyan Li, Yi Gao, Zhaoxuan Wu, Bing Yang, Yuefeng Liu, Walid Baaziz, Ovidiu Ersen,Meng Gu*,Jeffrey T. Miller andWei Liu*, Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2hydrogenation,Nature Catalysis,https://doi.org/10.1038/s41929-020-0440-2(通讯作者文章)
  2. Qi Wang, Xiang Huang, Zhi Liang Zhao, Maoyu Wang, Bin Xiang, Jun Li, Zhenxing Feng*, Hu Xu*,Meng Gu*,Ultrahigh-Loading of Ir Single Atoms on NiO Matrix to Dramatically 2 Enhance Oxygen Evolution Reaction, Journal of the American Chemical Society,https://dx.doi.org/10.1021/jacs.9b12642(通讯作者文章)
  3. Shaobo Han, Guang-Jie Xia, Chao Cai, Qi Wang, Yang-Gang Wang*,Meng Gu*& Jun Li, Gas-assisted transformation of gold from fcc to the metastable 4H phase,Nature Communicationsvolume 11, Article number: 552 (2020) (通讯作者文章)
  4. Shaobo Han, Chao Cai, Fei Yang, Yuanmin Zhu, Qian Sun, Yunguang Zhu, Hui Li, Haijiang Wang, Yang Shao-Horn*, Andy X. Sun*,Meng Gu*,ACS Nano,https://doi.org/10.1021/acsnano.0c00283(通讯作者文章)
  5. Fast Zn2+ kinetics of vanadium oxide nanotubes in high-performance rechargeable zinc-ion batteries, Fei Yang, Yuanmin Zhu, Yu Xia, Shuhuai Xiang, Shaobo Han, Chao Cai, Qi Wang, Yian Wang,Meng Gu*,Journal of Power Sources, 2020, 451, 2020, 227767 (通讯作者文章)
  6. Single-Atom Ir-Anchored 3D Amorphous NiFe Nanowire@Nanosheets for Boosted Oxygen Evolution Reaction, Xin Luo, Xiaoqian Wei, Hong Zhong, Hengjia Wang, Yu Wu, Qi Wang, Wenling Gu,Meng Gu*, Scott P. Beckman, Chengzhou Zhu*,ACS Appl. Mater. Interfaces2019,https://doi.org/10.1021/acsami.9b17476(通讯作者文章)
  7. Shenghua Ye, Feiyan Luo, Qianling Zhang, Pingyu Zhang, Tingting Xu, Dongsheng He, Licheng Guo, Yu Zhang, Chuanxin He, Xiaoping Ouyang, Qi Wang,Meng Gu*, Jianhong Liu* and Xueliang Sun*,Highly stable single Pt atomic sites anchored on aniline-stacked graphene for the hydrogen evolution reaction,Energy & Environmental Science, 2019,12, 1000-1007 (影响因子33)(通讯作者文章)
  8. Chao Cai, Shaobo Han, Qi Wang,Meng Gu*, Direct Observation of Yolk–Shell Transforming to Gold Single Atoms and Clusters with Superior Oxygen Evolution Reaction Efficiency,ACS Nano(IF=13.9), 2019, 13, 8, 8865-8871 (通讯作者文章)
  9. Zhu, Yuanmin; Yang, Fei; Guo, Mohan; Chen, Lang;Gu, Meng*, Real-Time Imaging of the Electrochemical Process in Na-O2 Nanobatteries Using Pt@CNT and Pt0.8Ir0.2@CNT Air Cathodes,ACS Nano(IF=13.9), 13, 14399-14407 (通讯作者文章)
  10. Qi Wang, Tianli Feng, Hu Xu, Sokrates Pantelides,Meng Gu*, Sub-3 nm Intermetallic ordered Pt3In Clusters for Oxygen Reduction Reaction,Advanced Science, 2019, 1901279 (通讯作者文章)
  11. Qi Wang, Zhi Liang Zhao, andMeng Gu*,CO Gas Induced Phase Separation in PtPb@Pt Catalyst and Formation of Ultrathin Pb Nanosheets Probed by In Situ Transmission Electron Microscopy,Small, 2019, 1903122 (通讯作者文章)
  12. Zhu, Jiakun; Shen, Huahai; Shi, Xiaobo; Yang, Fei; Hu, Xiangsheng; Zhou, Weidong; Yang, Hui;Gu, Meng*, Revealing the Chemical and Structural Evolution of V2O5Nanoribbons in Lithium-Ion Battery Using In-Situ Transmission Electron MicroscopyAnalytical Chemistry, 2019, 91, 17, 11055-11062 (通讯作者文章)
  13. Jing Li, Shaobo Han, Junwei Zhang, Junxiang Xiang, Xingqun Zhu, Ping Liu, Xuefeng Li, Chao Feng, Bin Xiang*,Meng Gu*,Synthesis of three-dimensional free-standing WSe2/C hybrid nanofibers as anodes for high-capacity lithium/sodium ion batteries,Journal of Materials Chemistry A, 2019,7, 19898-19908 (通讯作者文章)
  14. Yu Xia, Jianming Zheng, Chongmin Wang,Meng Gu*, Designing principle for Ni-rich cathode materials with high energy density for practical applications,Nano Energy, 49, 2018, 434-452(影响因子5) (通讯作者文章)
  15. Qi Wang, Zhi Liang Zhao, Sha Dong, Dongsheng He, Paramaconi Rodriguez, Bin Xiang, Zhiguo Wang, Yongye Liang*,Meng Gu*, Design of active Nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction,Nano Energy, Volume 53, 2018, Pages 458-467(影响因子5)(通讯作者文章)
  16. Yang Wang, Maoyu Wang, Zisheng Zhang, Qi Wang, Zhan Jiang, Marcos Lucero, Xing Zhang, Xiaoxiao Li,Meng Gu,*Zhenxing Feng,* and Yongye Liang*, Phthalocyanine Precursors To Construct Atomically Dispersed Iron Electrocatalysts,ACS Catal.2019, 9, 6252−6261 (影响因子4)(通讯作者文章)
  17. Qi Wang, Zhiliang Zhao, Chao Cai, Hui Li,Meng Gu*, Ultra-stable 4H-gold nanowires at up to 8000C in vacuum,Journal of Materials Chemistry A, 2019, 7, 23812-23817 (影响因子7)(通讯作者文章)
  18. Composition-Dependent CO2Electrochemical Reduction Activity and Selectivity on Au-Pd Core-Shell Nanoparticles, Shangqian Zhu, Qi Wang, Fei Xiao, Minhua Shao,Meng Gu*,Journal of Materials Chemistry A, 2019,7, 16954-16961 (通讯作者文章)
  19. R Zhong, Z Zhang, H Yi, L Zeng, C Tang, L Huang*,M Gu*, Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution,Applied Catalysis B: Environmental, 2018,237, 1130-1138 (影响因子2) (通讯作者文章)
  20. Yu Xia,Shaobo Han,Yuanming Zhu,Yongye Liang,Meng Gu*,Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries,Energy Storage Materials, 2019, 18, 125-132 (citescore:15)(通讯作者文章)
  21. Han, Shaobo; Wang, Jing; Shi, Xiaobo; Guo, Mohan; Wang, Hong; Wang, Chongmin;Gu, Meng*,Morphology-Controlled Discharge Profile and Reversible Cu Extrusion and Dissolution in Biomimetic CuS,ACS Applied Materials & Interfaces,2018, 10 (48), 41458–41464 (影响因子5)(通讯作者文章)
  22. Xin Luo, Xiaoqian Wei,Hong Zhong, Hengjia Wang, Yu Wu, Qi Wang, Wenling Gu,Meng Gu*, Scott Beckman, Chengzhou Zhu*,Single-Atom Ir-Anchored 3D Amorphous NiFe Nanowire@Nanosheets for Boosted Oxygen Evolution Reaction,ACS Appl. Mater. Interfaces2019,https://doi.org/10.1021/acsami.9b17476(通讯作者文章)
  23. Shaobo Han, Tianwu Chen, Chao Cai, Dongsheng He, Sean Li, Xia Xiang, Xiaotao Zu, Sulin Zhang,Meng Gu*, Probing the Origin of Gold Dissolution and Tunneling Across Ni2P Shell Using in-situ Transmission Electron Microscopy,ACS Appl. Mater. Interfaces2019,https://doi.org/10.1021/acsami.9b17531(通讯作者文章)
  24. Ruyi Zhong, Zisheng Zhang, Shuqi Luo, Z. Conrad Zhang, Limin Huang* andMeng Gu*, Comparison of TiO2 and g-C3N4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution,Catalysis Science & Technology, Sci. Technol., 2019, 9, 75–85Cover article(影响因子37)(通讯作者文章)
  25. Meng GU*, Z. Wang, C. Wang, J. Zheng, Atomic scale study of surface orientations and energies of Ti2O3 crystals,Applied Physics Letters,2017111, 181603 (影响因子5)
  26. Shaobo Han, Yuanmin Zhu, Chao Cai, Jiakun Zhu, wenbin han, Lang Chen, Xiaotao Zu*, HUI YANG*, andMeng Gu*, Failure mechanism of Au@Co9S8yolk-shell anode in Li-ion batteries unveiled by in-situ transmission electron microscopy,Applied Physics Letters, 2019, 114, 113901 (影响因子5)(通讯作者文章)
  27. Shaobo Han, Chao Cai, Weinan Caiyang, Xia Xiang, Hongxiang Deng, Xiaotao Zu*, Matthew J. Lawrence, Kai Sun*, andMeng Gu*, Interface engineering to enhance the oxygen evolution reaction under light irradiation,Phys. Lett.115, 103901 (2019) (通讯作者文章)
  28. Yuanmin Zhu, Chan Li, Qi Wang, Jianping Wang, Lang Chen, andMeng Gu*, Fast lithiation of NiO investigated by in situ transmission electron microscopy,Phys. Lett.115, 143902 (2019) (通讯作者文章)
  29. Cai, S. Han, W. Caiyang, R. Zhong, Y. Tang, M. J. Lawrence, Q. Wang, L. Huang,* Y. Liang,M. Gu*,Tracing the Origin of Visible Light Enhanced Oxygen Evolution Reaction,Adv. Mater. Interfaces2018, 1801543 (影响因子4.27)(通讯作者文章)
  30. Han, W. Liu, C. Chao, P. Cao,*M. Gu*,Dumbbell to Core–Shell Structure Transformation of Ni–Au Nanoparticle Driven by External Stimuli,Part. Part. Syst. Charact.2018, 1800426(通讯作者文章)
  31. Qingqing Cheng, Shaobo Han, Kun Mao, Chi Chen, Lijun Yang, Zhiqing Zou,Meng Gu*, Zheng Hu , Hui Yang*, Co Nanoparticle Embedded in Atomically-dispersed Co-N-C Nanofibers for Oxygen Reduction with High Activity and Remarkable Durability,Nano Energy, 2018, 52, 485-493 (影响因子5) (通讯作者文章)
  32. Guocai Yuan, Shaobo Han; Xiaobo Lei; Jizhen Hu; Weishu Liu; Qi Wang; Chen Chen; Qian Zhang; Qinyong Zhang*;Meng Gu*,The enhancement of thermoelectric performance of p-type Li doped Mg2Ge0.4Sn0.6 by Si addition,Scripta Materialia, 2019, 166, 122-127 (影响因子75)(通讯作者文章)
  33. Jiakun Zhu, Mohan Guo, Yuemei Liu, Xiaobo Shi, Feifei Fan,Meng Gu*,and Hui Yang*, In Situ TEM of Phosphorus-Dopant-Induced Nanopore Formation in Delithiated Silicon Nanowires,ACS Appl. Mater. Interfaces, 2019,11, 17313-17320(影响因子5)(通讯作者文章)
  34. Sun, Congli; Zhao, Kangning; He, Yang; Zheng, Jianming; Xu, Wangwang; Zhang, Chenyu; Wang, Xiang; Guo, Mohan; Mai, Liqiang; Wang, Chongmin;Gu, Meng*Interconnected Vertically-Stacked 2D-MoS2 for Ultrastable Cycling of Rechargeable Li-ion Battery,ACS Appl. Mater. Interfaces, 11, 20762-20769,2019 (影响因子5)(通讯作者文章)
  35. Jianhui Li, Shaobo Han, Chenyu Zhang, Wei Wei,Meng Gu*, Lingjie Meng*, High-Performance and Reactivation Characteristics of High-Quality Graphene Supported SnS2 Heterojunctions for Lithium-Ion Batteries Anode,ACS Appl. Mater. Interfaces, 2019, 11, 25, 22314-22322(通讯作者文章)
  36. Songhao Wu, Yidong Han, Kechun Wen, Zhaohuan Wei, Jie Xiong,Meng Gu*, Weidong He*, Composite nanofibers through in-situ reduction with abundant active sites as flexible and stable anode for lithium ion batteries,Composites Part B: Engineering, 2019, 161,369-375 (影响因子78)(通讯作者文章)
  37. Y Li, X Chen, M Zhang, Y Zhu, W Ren, Z Mei,M Gu*, F Pan*,Oxygen vacancy-rich MoO3-x nanobelts for photocatalytic N2 reduction to NH3 in pure water,Catalysis Science & Technology, 2019,9, 803-810 (通讯作者文章)
  38. Yubin Chen, Liangliang Zou, Hong Liu, Qi Wang,Meng Gu*, Hui Yang*, Fe and N Co-Doped Porous Carbon Nanospheres with High Density of Active Sites for Efficient CO2 Electroreduction,Phys. Chem. C, 2019,tps://doi.org/10.1021/acs.jpcc.9b02195(影响因子4.5)(通讯作者文章)
  39. Ye Hu, Ruoou Yang, Hengquan Chen, Shaobo Han, Qinggang He, Zheng Jiang,Meng Gu*, One-pot approach to synthesize a highly active 3-dimensionalFe-Nx-CNTs/rGO catalyst based on the CNTs and rGO composite matrix for the oxygen reduction reaction,ChemElectroChem, 2019,6, 504-513(影响因子14)(通讯作者文章)
  40. Matthew J. Lawrence, Veronica Celorrio, Xiaobo Shi, Qi Wang, Alex Yanson, Nicholas J.E. Adkins,Meng Gu*, Joaquín Rodríguez-López, and Paramaconi Rodriguez, Electrochemical Synthesis of Nanostructured Metal-doped Titanates and Investigation of Their Activity as Oxygen Evolution Photoanodes,ACS Appl. Energy Mater., ACS Appl. Energy Mater., 2018, 1, pp 5233–5244 (通讯作者文章)
  41. Hao Sun , Guanzhou Zhu , Miss Xintong Xu , Meng Liao , Michael Angell ,Meng Gu, Yuanmin Zhu , Huisheng Peng,Hongjie Dai, A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte,Nature Communications, (2019) 10:3302 (影响因子4)
分享到