南洋理工王昕、徐梽川Nature Energy:Co-Zn羟基氧化物作为OER催化剂发生晶格氧氧化机理的化学和结构起源


【引言】

由于氧析出反应(OER)在可再生能源转化为化学燃料中起着关键作用,因此理解其反应机理对于开发高效的OER催化剂至关重要。在传统OER机理中,通常涉及多个中间体的吸附,其吸附能相互之间存在依赖关系,因此导致OER存在一个难以消除的最小过电势~0.37 V。晶格氧氧化机理(LOM),涉及直接O-O耦合,能够绕过这一限制。基于LOM机理的催化剂可以表现出更好的催化性能,最近已经在钙钛矿材料中得到验证。然而目前导致LOM的化学和结构来源尚未研究清楚,阻碍了OER电催化剂的设计。过渡金属羟基氧化物(MOOH,其中M=Fe,Co或Ni)通常被认为是各种OER催化剂中的真正催化物种,并且它们的低维层状结构容易直接形成O-O键。本文采用CoOOH作为模型材料,通过掺入低价和催化惰性的Zn2+d10)离子形成不同局部构型的氧的非键态(ONB)。理论结合实验进一步揭示氧的非键态,氧hole以及局部构型三者对于OER机理的重要性。

【成果简介】

近日,新加坡南洋理工大学王昕教授徐梽川(共同通讯)教授等人,将催化惰性的Zn2+掺入CoOOH作为模型,研究表明OER机理取决于催化剂中Zn2+的量。Zn2+掺杂在CoOOH中引入氧的非键态;Zn2+的掺杂量决定了氧hole的不同局部构型。研究者提出了金属羟基氧化物上发生晶格氧氧化机理的条件:只有当两个相邻的氧化的氧可以杂化它们的氧hole而不显著牺牲金属-氧杂化(即存在Zn-O2-Co-O2-Zn的局部构型)。相关成果以Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts”为题发表在Nature Energy上。

【图文导读】

1氧的非键态中氧hole的形成

(a)锌取代的MO2模型;

(b)八面体MO6的分子轨道能级图包括ONB的形成;

(c,d)CoO2和锌取代的CoO2模型的电荷密度差分图(c)和PDOS(d);

(e)考虑Mott-Hubbard分裂后的CoO2和锌取代的CoO2模型的能带。

2 OER机理和局部构型的关联

(a)两种OER机理,AEM(左)和LOM(右);

(b)CoO2和锌取代的CoO2两种机理的各个OER步骤的自由能变化;

(c)在Zn0.2Co0.8O2上的发生LOM和AEM的各个吸附中间体的吸附构型;

(d)Zn0.2Co0.8O2上的L2中间体中的O(2p)和Co(3d)轨道的pDOS;

(e)在Zn0.2Co0.8O2上OER发生LOM时消除未占据的氧的非键态的示意图。

3锌取代CoOOH的设计和结构表征

(a)锌取代的CoOOH的制备方法的示意图;

(b,c)SEM图(b)和TEM图以及Zn0.2Co0.8OOH的STEM-EELS元素分布图(c);

(d,e)ZnxCo1-xOOH的EXAFS k2χ(k)傅里叶变换(FT)谱(d)和归一化钴K-边XANES谱(e);

(f,g)Zn0.2Co0.8OOH和CoOOH的Co(2p)XPS谱图(f)和O(1s)XPS谱图(g)。

4电催化OER分析

(a)ZnxCo1-xOOH的极化曲线;

(b)1.5 V vs. RHE电位时各催化剂基于BET表面积和质量归一化的电流密度;

(c)Zn0.2Co0.8OOH的稳定性测试;

(d)是(a)对应的塔菲尔图;

(e)不同pH下Zn0.2Co0.8OOH的OER活性;

(f)1.5 V vs. RHE电位下的Zn0.1Co0.9OOH,Zn0.2Co0.8OOH和CoOOH的电流密度与pH的关系。

5 LOM中的过氧物种的化学识别

(a)O22-和O2-物种之间的热力学稳定性比较;

(b)TMA+探针对O22-物质化学识别的示意图;

(c)CoOOH(1和2)和Zn0.2Co0.8OOH(3和4)的拉曼光谱图;

(d)在1 M KOH和TMAOH(分别溶解在水和重水)中,Zn0.2Co0.8OOH的极化曲线及其Tafel斜率图。

【小结】

本文采用不同浓度Zn2+掺杂的CoOOH作为OER的模型催化,研究表明当两个相邻的氧化氧原子在不牺牲金属-氧杂化的情况下结合时,OER机制才能从AEM转变为LOM。特别是,精准设计的具有Zn-O2-Co-O2-Zn构型的催化剂Zn0.2Co0.8OOH具有最佳的活性。化学探针技术耦合拉曼光谱鉴定了LOM中的过氧关键物种。此外,Zn-O2-Co-O2-Zn构型能够在热力学和动力学上平衡O-O结合和氧空位的填补过程,确保催化剂的稳定性。这项工作为开发有效和稳定的水氧化催化剂和其他涉及晶格氧的多相催化提供了指导。

文献链接:Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts(Nature energy, 2019, DOI: 10.1038/s41560-019-0355-9)。

团队简介

南洋理工大学徐梽川课题组近年来致力于氧电催化的研究。对于过渡金属氧化物,特别是尖晶石结构的催化剂有一定的工作积累。相关文献推荐:

  1. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides, Angewandte Chemie International Edition, 2019, DOI: 10.1002/anie.201902114
  2. Mastering surface reconstruction of metastable spinel oxides for better water oxidation, Advanced Materials, 2019, 1807898
  3. Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells, Advanced Materials, 2019, 1806296
  4. Metal-oxygen Hybridization Determined Activity in Spinel-based Oxygen Evolution Catalysts: A Case Study of ZnFe2-xCrxO4, Chemistry of Materials, 2018, DOI: 10.1021/acs.chemmater.8b02871
  5. The Comprehensive Understanding of 10 mA cm−2geo as an Evaluation Parameter for Electrochemical Water Splitting, Small Methods, 2018, DOI: 10.1002/smtd.201800168 (Editorial)
  6. Degree of Geometric Tilting Determines the Activity of FeO6 Octahedra for Water Oxidation, Chemistry of Materials, 2018, 30, 4313-4320
  7. Impact of Surface Area in Evaluation of Catalyst Activity, Joule, 2018, 2, 1024-1027, (A commentary article)
  8. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction, Advanced Materials, 2018, 30, 1802912
  9. Revealing the Dominant Chemistry for Oxygen Reduction Reaction on Small Oxide Nanoparticles, ACS Catalysis, 2018, 8, 673-677
  10. From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts, Nano-Micro Letters, 2017, DOI: 10.1007/s40820-017-0161-5
  11. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition Metal Spinels, Advanced Materials, 2017, 29, 1606800

南洋理工大学王昕课题组研究兴趣主要集中于电催化剂设计在燃料电池、CO2还原、电解水以及其他小分子氧化中的应用。相关文献推荐:

  1. Wang, L. Gan, Q. Zhang, V. Reddu, Y. Peng, Z. Liu, X. Xia, C. Wang, X. Wang*, A water-soluble Cu complex as molecular catalyst for electrocatalytic CO2reduction on graphene-based electrodes,Adv. Energy Mater.2019, 9, 1803151.
  2. Dou, J. Song, S. Xi, Y. Du, J. Wang, Z. F. Huang, Z. J. Xu, X. Wang*, Boosting electrochemical CO2reduction on Metal-Organic Frameworks via ligand doping."Angew. Chem. Int. Ed., 2019, 131, 4081-4085.
  3. Wang, L. Gan, W. Zhang, Y. Peng, H. Yu, Q. Yan, X. Xia, X. Wang*, In situ formation of molecular Ni-Fe active sites on heteroatoms doped graphene as heterogeneous electrocatalyst toward oxygen evolution,Science Advances, 2018, 4, eaap7970.
  4. Zhang, L. Sun, J. M. Vianney Nsanzimana, X. Wang*, Lithiation/delithiation synthesis of few layer silicene nanosheets for rechargeable Li-O2batteries,Advanced Materials, 2018, 30, 1705523.
  5. Wang, X. Ge, Z. Liu, L. T., Y. Yan, W. Xiao, X. Wang*, Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites,Journal of the American Chemical Society, 2017, 139 (5), 1878.
  6. -F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, X. Wang*, Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives,Adv. Energy Mater., 2017, 7, 1700544.
  7. S. Xie, B. Y. Xia, Y. W. Li, Y. Yan, Y.H. Yang, Q. Sun, S. H. Chan, A. Fisher, X. Wang*, Amino acid functionalized copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons,Energy Environ. Sci., 2016, 9, 1687-1695.
  8. Y Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou*, X. Wang*, A metal-organic-framework-derived bi-functional oxygen electrocatalyst,Nature Energy, 2016, 1, 15006.

本文由张金洋编译整理。

投稿以及内容合作可加编辑微信:cailiaorenvip

欢迎大家到材料人宣传滚球体育 成果并对文献进行深入解读,投稿邮箱tougao@cailiaoren.com。

分享到